A Process for 2IM24/25

1
Introduction
3
1.1
Technical part of the process
3
1.2
Management part of the process
5
1.2.1
SPMP
6
1.2.2
SQAP
6
1.2.3
SCMP
7
2
User Requirements phase
8
2.1
Example: User requirements
9
3
Software Requirements Phase
11
3.1
Example: Initial logical model
12
3.2
Example: Extended logical model
12
3.3
Example: Sequence diagram
14
3.4
Example: Screenshots
15
4
Architectural Design Phase
16
4.1
Example: Architectural model
17
5
Detailed Design Phase
18
6
Implementation
19
6.1
Example: High-level view
19
6.2
Example: Detailed view
20
7
Test Phases
21
7.1
Unit Tests
21
7.2
Integration Tests
21
7.3
System Test
21
7.4
Acceptance Test
21
References
23
8
Concluding remarks
22
Appendix A: The Coffee Machine
24
Notes on modeling
24
Appendix B: Overview of phases and deliverables
27

1 Introduction
This document describes a specific software development process for the Software Engineering Project for the Minor Programs (2IM24/25). Many books have been written about software engineering, e.g. [1] and [2]. The process described here is a very much simplified and adapted version of the Software Engineering Standards of the European Space Agency (ESA) [5], which is a relatively compact standard. The process is divided into several phases: the User Requirements (UR), Software Requirements (SR), Architectural Design (AD), Detailed Design (DD), Implementation and Testing phases.
Although the deliverables that accompany the different phases should be delivered consecutively, this does not mean that the phases are executed strictly sequentially. For example, some implementation work will generally be done early in the process, to eliminate risks late in the process. Participants of the 2IM24/25 projects generally have little programming experience. Therefore, it is important that some team members start as soon as possible with experiments involving prototypes that explore possible solutions for the products to be delivered. The knowledge obtained with the prototypes ensures that the implementation will not suffer major delays due to this gap in the knowledge of the team. In general, it is important to identify and eliminate risks as early as possible.
It is important that team members spend their time as evenly as possible from the beginning of the project. Teams tend to spend too few hours in the beginning of a project as the deadline is still far away. However, when the project team is too slow in the early phases of the project, this usually results in a lack of time at the end. This, in turn, results in loss of quality and/or loss of implemented functionality. Therefore, a schedule is set in Table 2 of Appendix B. The schedule contains hard deadlines that will be strictly adhered to and soft deadlines that serve as guidelines.
Sections 1.1 and 1.2 give an overview of the technical and management aspects of the process. In the chapters that follow, the phases and the contents of the deliverables of the phases are described in more detail. Due to the limited amount of time available during 2IM24/25 projects, not all phases need to be (fully) executed (see also Appendix B: Overview of phases and deliverables).
1.1 Technical part of the process

The UR and SR phases are concerned with requirements (i.e. the “what”), whereas the AD and DD phases are concerned with implementation (i.e., the “how”). A starting point is a short informal description of the customer’s wishes.
During the UR phase, requirements are elicited from the customer. A logical model based on these requirements is constructed in the SR phase. Modeling the requirements serves several purposes: the model is used to check if the requirements are complete and to ensure that the team understands the problem domain. The logical model also serves to model the external behavior (functionality) of the system to be built: a stimulus from the environment can be “followed” through the model until a response is produced (see Appendix A: The Coffee Machine).
In the SR phase, a prototype is constructed as well. The prototype models the user interface. This way, both the functionality of the system to be built and the user interface, i.e., all external features of the system, are described.

During the AD phase, an architectural model is designed. The system is described in terms of a number of modules (components, packages), each of which has a well-defined functionality. The interfaces of each module are described and a logical model is designed for each module. After the interfaces and the functionality of all modules are designed in detail, the modules can be constructed by independent teams as both the external interfaces and the functionality have been decided upon. During the DD phase, the internal structure of each module is designed in detail and the modules are implemented and tested.
After a module is implemented, it can be tested in isolation by a Unit Test (UT). When modules are completed, they can be assembled and tested in combination – the Integration Tests (IT). Assembly and testing takes place in the inverse direction of the dependencies between the modules. The running example used in this document consists of three modules:
1. the database which does not depend on any other module,
2. the database access package which depends on the database, and
3. the main (user interface) package which depends on the database access package and, therefore, indirectly also on the database itself.
Assembly in this case can be done by first assembling and testing the database and the database package and then adding the main package and test the entire system. After the IT, a System Test (ST) follows in which the entire functionality is tested. Finally, the Acceptance Test (AT) is executed by the customer. If this test passes, the system can be transferred to the customer in the Transfer (TR) phase and the project ends. For 2IM24/25, this process is somewhat simplified.

[image: image1.emf]

Figure 1: Relation between the construction and test phases.
There are direct relations between the test phases and the construction phases (Figure 1).

The AT is based on the User Requirements Document and must be agreed on with the customer. Although the details of the tests can only be filled in later, the decision what to test and the method of testing should be decided during the UR phase. This way, it is ensured that the requirements can be tested. It prevents one from writing down requirements such as “the user interface must be user-friendly”.
The System Test is based on the software requirements. In general, this is an extended version of the AT and also stress tests (these test if the system can endure peak loads) are executed if relevant. Likewise, the IT is based on the architectural design and the UT on the detailed design.
It is advisable to explicitly include all testing activities in the planning. The planning then more clearly shows when the implementation should be finished, namely well ahead of the project deadline… Once testing starts, no new features should be added; only the functionality realized up to then should be tested and debugged.
1.2 Management part of the process

Several management documents must be delivered. Most of these documents need to be updated as the project progresses. For example, the Software Project Management Plan (SPMP) initially contains the start and end dates for all phases, but only a detailed planning for the first two phases. Also included in the SPMP is the planning for the various testing activities. The SPMP is updated at the end of each phase with the detailed planning for the next phase. The other management documents set out rules for various activities. The Software Quality Assurance Plan (SQAP) describes how software quality is ensured (e.g. describes coding standards) and the Software Configuration Management Plan (SCMP) describes how the various deliverables are managed. In particular, it details the structure of the project repository and version management.
Management documents should be kept as short as possible. Do not produce long documents with many rules that nobody adheres to. Instead, state only some basic rules that you think everybody can strictly follow.
It is strongly advised to use Trac (http://trac.edgewall.org/) to support Project and Configuration Management. Trac is an enhanced wiki and issue tracking system for software development projects. It also has an interface to the Subversion version management system. For each project, a Trac site and a Subversion repository will be created on the Subversion server of the Mathematics and Computer Science department.

The Project Manager (PM) is responsible for the SPMP. The PM is responsible for the identification of the tasks to be accomplished and the allocation of manpower to each task. Therefore, the PM must know how much time each team member can spend and when the team members are available.

Team members should keep track of the time they spend on the project. The PM must collect these data and report these to Senior Management (SM): the teaching staff. It is important to administer time accurately as the data will be useful for future generations of students. Do not forget to include the hours spent during the regular classes!
The Quality Manager (QM) is responsible for the SQAP. The QM must ensure that products adhere to the standards set out in the SQAP and therefore plays an important role in (organization of) reviews.

The Configuration Manager (CM) is responsible for the SCMP. The CM initially organizes the project repository as described in the SCMP and ensures that the repository remains organized as described in the SCMP.
The following documents should be produced; the items listed are the main contents. Each of these documents has a main part and an appendix for each phase that gives specific details for that phase.
1.2.1 SPMP
The SPMP should contain:

· Project organization

· Effort estimation for each phase

· Team organization
· Planning when various test activities are done: plan/design/execution

· Which deliverables are reviewed by whom and when

· What is delivered to document tests
· How time registration is set up

· Risk analysis and actions to be taken to reduce risks

For each phase (add before start of phase):

· A list of deliverables

· Task assignment

· Effort estimation for each task and deliverable
· Risk analysis
The SPMP document should be relatively short.
1.2.2 SQAP
The SQAP contains:
· Documentation standards (e.g., layout, cover, standard chapters)
· Design standards (in SQAP/SR, /AD)
· Coding standards (in SQAP/DD)
· Software quality assurance metrics, e.g. maximum length of procedures, number of parameters of procedures (in SQAP/DD)
· How is it verified that products adhere to these standards

· Organization of reviews: roles, what, how

· Problem reporting procedure

1.2.3 SCMP
The SCMP describes:
· Storage of documents

· Structure of document storage, including source code
· Definition of document templates and where these can be found in the repository

· Identification of documents (e.g. version numbers)

This document should be a 1 to 2 page description of how you plan to structure your repository in Subversion. In particular, it should also define how the program code is managed to allow several people to work on the same module and to define where the most recent versions can be found.
1.3 Example

As a running example, we use a very simple (database) application that contains students, courses and the participation of students in courses. Students can be added and removed and changes can be made to the student data. Courses can be added, removed and listed. Students can register for courses and a grade can be set for courses that a student has completed. The example is only partially elaborated, in particular for the architecture and implementation phases.

The example was developed initially as a coding example and models were constructed later. Due to this, there are some inconsistencies in naming, which still need to be corrected.
The example includes

· a short initial informal description from the customer

· the user requirements derived from it

· a first version of the logical model

· the logical model
· parts of the prototype

· the architectural model

· a high-level view of the implementation

· a detailed view of the implementation

2 User Requirements phase

During the User requirements phase, the requirements are elicited from the customer. One of the main problems in this phase is that the views of the customer and the development team are usually different. The UR and SR phases are meant to let these views on the system converge as much as possible. This is accomplished by, e.g., frequent meetings with the customers and construction of prototypes. The User Requirements Document (URD) serves as a contract between the team and the customer.
The URD should start with a general description of the product’s functionality, the environment in which it is used, and a characterization of its users. Then the individual requirements should be listed and a number of use cases (i.e. examples of typical uses of the system) should be given. If appropriate, also include a glossary of domain-specific terms. You may use a spreadsheet for the functional and extra-functional requirements.
Requirements should be stated unambiguously in plain short sentences. The quality of each requirement can be analyzed with the aid of the flow scheme of Figure 2, which is similar to the procedure described in [3]. Notice that it is also checked if requirements can be tested. The method by which a requirement can be tested is exactly what the contents of the ATP should be in this stage. Therefore, a first version of the ATP is one of the outputs of this phase. Notice that only the method is identified, not the detailed procedure, e.g., in the running example, the requirement: “The system provides functionality to add a student” can be tested by adding a student and then verifying that the student has been added by inspection of the database.
Requirements should be accompanied by a priority. The highest priority requirements must be implemented in the final product, the lowest priority requirements will only be present if time allows this. The priorities indicate the order in which functionality is implemented. Obviously, the lower priority requirements must be taken into account in the design, so that the design does not prevent or hamper implementation of these requirements.

In addition to the functional and so-called extra-functional requirements, the URD should describe a number of scenarios that illustrate typical uses of the system. These scenarios may also be used for the ATP.
Before you elicit requirements from the customer, you should prepare the session. Prepare questions on the basis of available material and prepare use cases or class diagrams to determine if the customer’s view and your view of the functionality agree.

During this phase, the project plan and the other management documents are written, globally for the entire project and in detail for the UR and SR phases.
Already in this phase, experiments must be conducted in areas where the team’s expertise is lacking (high risks). For example, if a web application should be delivered, it can be investigated which scripting languages are available and which seem to be most suitable. Likewise, the customer may prescribe a certain programming language that the team is not familiar (enough) with. In this case, team members can start experimenting to accomplish tasks that will most likely be needed in the final implementation. This results in a number of “prototypes” that will speed up the final implementation. These activities are not restricted to the UR phase, but continue during the entire project.

Deliverables for this phase are the URD, ATP, SPMP, SCMP and SQAP.

[image: image2.emf]

Figure 2: Requirements analysis

2.1 Example: User requirements
Initial informal description of the system by the customer
.
The system is used to administer students, courses and the course participation of students. The system must be implemented in Java and use a relational database to store the data. The system must have a graphical user interface.

User Requirements
Functional Requirements (priorities not shown)
Functionality concerning students

The user can add and remove students and change the data recorded for each student.

UR-1
For each student, the system stores

a. a unique student identifier

b. last name

c. initials

d. date of birth

UR-2
The system provides functionality to list the students

UR-3
The system provides functionality to select a student

UR-4
The system provides functionality to remove a selected student

UR-5
The system provides functionality to change the data of a selected student

UR-6
The system provides functionality to add a student

Functionality concerning courses

The user can add and remove courses and change the data recorded for each course.

UR-7
For each course, the system stores

a. a unique course identifier

b. course name

UR-8
The system provides functionality to list the courses

UR-9
The system provides functionality to select a course

UR-10
The system provides functionality to remove a selected course

UR-11
The system provides functionality to change the data of a selected course

UR-12
The system provides functionality to add a course

Functionality concerning course participation

UR-13
For each course participation, the system stores

a. a course

b. a student
c. a grade
UR-14
The system provides functionality to list the course participations

UR-15
The system provides functionality to select a course participation

UR-16
The system provides functionality to remove a selected course participation

UR-17
The system provides functionality to add a course participation

UR-18
When adding a course participation, the user can select the course from a list
UR-19 When adding a course participation, the user can select the student from a list
Extra-functional requirements

UR-20
The system will be implemented in Java

UR-21
The data will be stored in a relational database

UR-22
The system will have a graphical user interface
3 Software Requirements Phase
During the SR phase, a model is made to describe the problem. This description should not take any implementation details into account. The reason for this phase is for the team to get an understanding of the problem and the entities that play a role in it. The model should describe the system as seen “from the outside”. With the model, it must be possible to simulate its behavior. The model is given as a UML [6] class diagram, use case diagrams and sequence diagrams. The model describes what the product should do, not how.
A good starting point for the model is the requirements document. Nouns that occur in the requirements can give rise to classes, adjectives to attributes and verbs to methods. This leads to an initial logical model (see section 3.1). From the scenarios in the URD, a number of typical use cases can be derived. Each use case is a “driver” for a sequence diagram. With the classes, methods and attributes in the initial logical model, try to represent a typical use case with a Sequence Diagram (SD). This usually leads to the conclusion that other classes, methods and attributes are needed in the class diagram. Add these to the class diagram and repeat the process until you have an extended logical model with which you can trace an input (a method call on one of its classes) through the model until the expected output is produced. It is very well possible that missing or incomplete User Requirements are discovered in the process. This is another reason to go through the SR phase.
Appendix A: The Coffee Machine shows the end product of this process. In this appendix, it is shown how the classes and methods are derived from a short description of the functionality and an SD shows how user actions result in a cup of coffee. Notice that the coffee machine might be a modern coffee machine as they can be found throughout the TU/e or it might be a box with a goblin inside. Although this is stretching it a bit, it might describe the process of ordering a cup of coffee in a restaurant and the actions of a waiter.
The Software Requirements Document (SRD) should contain a general description, the initial logical and extended logical models, use cases and sequence diagrams, along with clarifying text. In addition, each class, method and attribute in the extended logical model should be documented. For a class, explain its function and possible invariant properties. For a method, describe its function and pre- and post-conditions. For an attribute, describe its purpose. Each of these Software Requirements should be numbered and it should be documented from which User Requirement it is derived. Never renumber your User Requirements after this in order to avoid rework of the SRD! Normally, this tracing is also done from Software Requirements to User Requirements, but given the limited time available, this need not be done.
The SRD contains a problem description, so do not use implementation terminology!
In addition to the model, a prototype should be delivered that demonstrates the Graphical User Interface (GUI). This can be done with a number of screenshots and some description that demonstrates the use cases. Another possibility is a mock-up with which one can navigate between the different screens that contain all the controls of the final product but without any further functionality behind it. Notice that the prototype is a contract between the team and the customer once the SRD has been accepted! Because the GUI is agreed upon during the SR phase, the ATP can now be completed: the test cases can now be elaborated to contain the precise sequence of actions needed to perform the test and the test procedures can be added (see section 7.4)
Deliverables for this phase are the SRD, the STP, the completed ATP, and the additions to the management documents.

3.1 Example: Initial logical model
[image: image3.png]dministation

Couse

o

tStudentn po—
ltCousesn

0
Studen

o

student atiipatgns

paticipaligns

tudentia
it Patioipation
iniiats
binndste ate

tudent

Figure 3: Initial version of the logical model

3.2 Example: Extended logical model
When elaborating the initial version of the logical model, it became apparent that the Administration class would become too large. This class is the logical choice to ‘own’ the Students, Courses and Participation sets. Since there would be add, change, remove, etc. methods for each of these, it was decided to introduce Administration classes for each of these sets.

[image: image4.emf]

Figure 4: Extended logical model.
3.3 Example: Sequence diagram

[image: image5.jpg]‘adminisiration oadmi shdmin cAdmin

Top Package:user students

T T T
I | |
gel_participations ' | |
I | |
pAdmin ' | |
I | |
F dPariipation 1 | |
L | |
stStudenss | |
Bl |

geL_name

e

OO 1 o B
[~ ol sudenid

sel of <names sid>

i
seleciStudent <' i
i
getsudent(sd) i
i
s i
L i
: The selecton o a course
stCourses
is simiar o the selecton
ofa sudant andis shown
setof <name.cid>
only parial
selectGourse i estiea
geCourselcid)

Paridpaion=)

carticpation

Partcipation

ke

> ‘add new partcpation to participations

Figure 5: Sequence diagram.

3.4 Example: Screenshots
Figure 6 and Figure 7 show screenshots of the prototype: the main menu and the student table.

[image: image6.emf]

Figure 6: The main menu.

[image: image7.emf]

Figure 7: The student screen.
4 Architectural Design Phase
The goal of the Architectural Design (AD) phase is to divide the system into a number of coherent pieces (packages) that can be developed in isolation by different groups. This division also reduces the complexity, because each package has a lower complexity than the entire application.
The AD phase is the first phase that concerns the construction of the software. The extended logical model is a good starting point for an architectural model, but it needs to be extended with some implementation details. The GUI must be added to the model as it is not modeled in the SR phase. In an application that uses a database, entities in the database will have a representation in both the database model and the software model. Likewise, some of these entities will also have a representation in the GUI. Normally, classes from the logical model will also need to be extended with extra attributes.
Packages should be chosen such that the packages are coupled loosely but the classes within each package are tightly coupled. For example, there should be fewer class associations between classes in different packages than between classes in the same package. In order to make this possible, it is necessary to define the interfaces between the different packages. These interfaces consist of all the methods that can be called from the “outside” including their signature, i.e., their name, parameters, and return types.

The AD Document (ADD) should contain the model and describe the interfaces between the packages. Document these Architectural Requirements in the same way as the Software Requirements. Document the functionality of each package as well. Trace the Architectural Requirements to the Software Requirements. The functionality of each package is described by a logical model as in the SRD, i.e., for each package there should be class diagram of the classes in that package. Often, parts of the extended logical model can be re-used here. Notice that sequence diagrams can help you in the design process!
When the architecture is designed, it is also possible to determine how to assemble and test the system. After the packages are tested in isolation after the implementation, one can start testing packages together. Packages are assembled starting with a package that does not depend on other packages. The first package to add to this is a package that only depends on the first. In this way, one continues until the entire system is assembled. The advantage of this approach is that only test drivers are needed, and no test stubs. The Integration Test Plan (ITP) describes the order in which the system is assembled, what extra facilities are needed, and which tests will be done to verify the correct functioning of the system.
The architecture diagram for the running example is shown in Figure 8. The system is split into three packages: the GUI, the database and a package that serves as an abstraction layer for the database. In this package, the data from the database are converted to a format suitable to store in Java arrays. Only the functionality for the student table is elaborated. Each package still contains only logical models, implementation details have not been added yet.
Notice that the interface between the DbXSDS package and the GUI already requires knowledge of implementation details: remove and change must have the row number as parameter (not shown below). This can be avoided by passing the entire record in both cases. However, an additional internal action is then required in the DbXSDS package to locate the record in the database, which results in a locate(record) method in this package. This introduces unnecessary overhead in the application as the record number is returned by the TableModel that implements the StudentTable in the GUI. This is a typical architectural issue: some generality is sacrificed for performance.
It is essential that prototypes are built to experiment with implementation details. In this case it would mean find out how TableModels work, how to query the database and how to build the GUI.

Deliverables of this phase: ADD, ITP and additions to the management documents.

4.1 Example: Architectural model

[image: image8.png][openstudent s
an sventhandier

in theimplementation
Jand s nama

Jastionpertormed

Jwava requires thisy

GuTer

mainframe

| StudantTable

— - [pubtc veid apenstudenty

public void 3440
publio void change0

(]

publio void ramave)

Javaxaming table

java.avt svent

Vi

Dexs0s

javaxsving

Student

DbxsDs,

public Connestion cor|

publi boslean closeq)
public void commit)

public void addRecord(Sting Sdld, Sting sName, Sting siit,java sql Date 580ato)|
publio void dsletaRecordintrecord)

publio void madifyRecard(Sting 50, Sring nm java.5al.Date ba,int record)

public void quenDb)

publi Stingl getColumnNiames)

Dbl n geCahumnCount) Il

publc it getRawCount)
public Dbject]] getTableContents)
publi void StudeniDbXSDS datat)

o8

Student

publc intstudentid

Couse
0.0 [Parteipation

publc Sting couseld

publc int lastiame
publc Sting infals
public nt bishdate

publi Student anStudent)
public Set anStudents)

publi Sting name

public void registersting s9)|

jovasal

Figure 8: Architectural model (only students shown).
The interface of the DbXSDS package (for the GUITest package) consists of the methods of the classes Student and DbXSDS and the attribute of DbXSDS (setters and getters of the attribute are implicitly given). The interface of the DB package consists of the table structure and the queries. Notice that only a part of the Java packages is shown (general utility packages are left out).
5 Detailed Design Phase

In the Detailed Design phase, the architectural design is refined to the point where it can be directly implemented (coded). However, as the participants in this course are not, in general, experienced programmers, a detailed design would probably only be a waste of time. Therefore, the detailed design and implementation phase coincide for 2IM24/25.
6 Implementation

In this phase, different groups can implement the different packages. Important issues in this phase are version management and to make sure that everyone has access to the latest versions of packages. Also, use the checkout procedure properly, so no two people work o the same file at the same time! With Subversion, previous versions are available so that it is always possible to revert to a previous version in case of major calamities.
Document the final implementation in the Detailed Design Document (DDD): packages, classes, methods and attributes. For each of these, document in the header resp. declaration, its purpose and the User Requirement(s) from which it originates. For a class, document the class invariants, if applicable. For a function, document parameters, return type and pre- and post-conditions. It is strongly recommended to use a documentation generator for this purpose. Use a documentation generator built into your development environment (e.g., JavaDoc in Netbeans), or use a general purpose documentation generator [7]. RoboDoc seems to be the better choice as NaturalDocs only outputs html.
Stop adding and finishing new functionality when the deadline for this phase is reached, after that, start testing and just repair defects found.
Deliverables: DDD, Software User Manual (SUM), code and updates of the management documents. The SUM describes installation and use of your product.
6.1 Example: High-level view
Figure 9 shows a high-level view of the implementation (excluding the database).

[image: image9.emf]
Figure 9: High level view of the implementation.
6.2 Example: Detailed view
Figure 10 shows the classes as reverse-engineered from the implementation. Some other (nameless) classes were also found. These were MouseAdapter and Runnable classes from the Java packages.

[image: image10.emf]

Figure 10: Implementation details.
7 Test Phases

7.1 Unit Tests
Due to time constraints, it may not be feasible to do unit tests for all classes and packages. However, if it is feasible, use the unit test facilities provided by your development environment.
Do not wait with testing until you have a complete first version: implement part of the functionality and test this part before continuing! Obviously, during the testing you’ll have to go back to the implementation phase very often. In principle, one should the repeat all the previous testing, which might take to much time for 2IM24/25.
Deliverables: updates of management documents. Writing test reports, which would normally be done, would take too much time.

7.2 Integration Tests
In this phase, the system is assembled, typically in the direction opposite to the dependencies.
Deliverables: update of management documents.

7.3 System Test
In this phase, the system is exhaustively tested to make sure the system will not fail the AT. The ST should be a superset of the AT. Include test cases that test extreme circumstances. For example, if you have an array A that can contain up to 10 items, make sure you have a test case that checks if the case when it contains 10 items and check what happens if you try to store 11 items in the array if there is any chance that this might occur.
Deliverables: none

7.4 Acceptance Test
The ATP is extended with test procedures during the SR phase. A test procedure defines what the inputs are, which tests are executed and what the expected outputs are.
Provide the customer with

· A CD with your installation files and input files for the test
· A copy of the ATP

· A copy of the SUM

The customer must do the acceptance test on his/her own without aid from the team. The group must record which tests pass or fail and the result should be recorded in a test report. If all tests pass and all the highest priority requirements are tested, the customer may accept the product.

Deliverables: test report, presentation (see chapter 8).
8 Concluding remarks

In this document, a software development process for 2IM24/25 has been described. The process covers both the technical part (i.e. the phases UR, SR, AD, DD, implementation, UT, IT, ST, and AT) as well as the managerial part, and includes various examples. Deliverables are described for each of the phases of the technical part. Moreover, it is described which management documents must be created or updated during each phase. This document briefly describes what the management documents should contain. An overview of the phases and deliverables can be found in Appendix B: Overview of phases and deliverables. Appendix B also gives a table that gives hard and soft deadlines for deliverables and planned activities during class hours.
The Project is concluded with a presentation for all groups, the teaching staff and optionally, the customers. The presentation should cover both the product (including a demonstration) and the process. Include some statistics; include at least the number of lines of (real) code and hours spent (per phase and in total). Recommendations for improvements are appreciated. Also cover topics such as what you have learnt, was it enjoyable and did you get insight into the software engineering process.
References
The ESA standard [5] is available from: http://wwwis.win.tue.nl:8080/2R690/doc/PSS050.pdf.

Note that [4] is based on the ESA standard.

[1] I. Sommerville, Software Engineering, Addison-Wesley, ISBN 0-321-31379-8, 8th edition, 2007.

[2] T.C. Lethbridge and R. Laganière, Object-Oriented Software Engineering – Practical Software Development using UML and Java, McGrawHill, ISBN 0-07-70109082, 2nd edition, 2005.

[3] Suzanne Robertson and James Robertson, Mastering the requirements process, Addison-Wesley, 1999.

[4] C.Mazza, J.Fairclough, B.Melton, D. de Pablo, A.Scheffer, R.Stevens, M.Jones, G.Alvesi, Software Engineering Guides, Prentice Hall, ISBN 0-13-449281-1, 1996.
[5] ESA Board for Software Standardization and Control (BSSC), ESA Software Engineering Standards, European Space Agency, February 1991.
[6] Formal description available from http://www.omg.org/docs/formal/07-02-05.pdf (UML 2.1.1) and http://www.omg.org/docs/formal/05-04-01.pdf (UML 1.4.2)
[7] Robodoc: http://www.xs4all.nl/~rfsber/Robo/robodoc.html;

 NaturalDocs: http://www.naturaldocs.org/
Appendix A: The Free Coffee Machine
The following text is a very short description of a coffee machine:
The coffee machine delivers coffee in different strengths and with different amounts of sugar and milk, as selected by the customer. The coffee machine presents menus that allow making the different choices. The product is served in a cup.

Notes on modeling
The underlined words give a good clue about classes, the italic ones about methods and highlighted words about attributes.

Customer: in any case an actor, may transform to UI

[image: image11.emf]

Figure 11: Class diagram.

Some aspects were not modeled in the class diagram shown in Figure 11 either for simplicity (menu) or in order not to implicitly make design decisions, e.g. whether the coffee comes in big thermos flasks or as beans that need grinding, addition of water and filtering. As there is no such detail in the spec, we need to ask the customer. So modeling the problem induces questions about details that need answers from the client.
The cup, in principle, places itself. Notice that the reference to the cups should not be named “cupholder” – this is too much directed to implementation. For most coffee machines, this will be the reality, but it is not justified by this requirements specification.

Tea is added only to show that the model is easily extended with other products. To be able to easily extend the model for other products (tea, milk, soup, cocoa) the class Product has been introduced. To generate a menu, the names of all products in the products aggregation can easily be collected without knowing about individual products.
The ingredients class was introduced to be able to treat all ingredients in a uniform way. The add method is abstract in the Ingredients class and must be implemented by each individual ingredient, which makes sense as adding, e.g. coffee from a reservoir is quite different from adding sugar.

Each product knows what its ingredients are, so the knowledge about the preparation of the product is entirely with the individual products.

In an actual implementation, the cups aggregation would probably be replaced by a class to control a cup holder, which actually might involve quite a bit of logic, e.g., when users may place their own cups. Likewise, the Coffee class is most likely replaced by the control software for an instant coffee container.
Use dynamics (sequence diagrams, state charts) from the start. In this case, start e.g. with the classes coffee machine, coffee, sugar, milk and menu, place the attributes and methods that you identify. Then, try to make a Sequence Diagram for this model; see Figure 12 for an example. From the SDs you will find missing methods, classes and attributes. Then go back to the CD, add these things and back to the SD. This is the fastest way to come up with a model: do not focus too long on the static aspects only, because once you get to the dynamic aspects you have to change too much! In the static diagrams, consider likely extensions so your model is extendible, without compromising its simplicity. In this case, each product controls its own recipe and the abstract product and ingredient classes make the model flexible: as long as it can be poured into a cup any product can still be incorporated.
Note that Figure 12 starts with the initialization (i.e. creation) of the system, and a user subsequently selects coffee with sugar, the strength of the coffee, the amount of sugar, and the actual service (i.e. “pour”).

[image: image12.emf]

Figure 12: Sequence diagram.
Appendix B: Overview of phases and deliverables
An overview of the phases of the described software development process for 2IM24/25 is given in Table 1. This table also indicates which deliverables are not required for 2IM24/25. The postfix “*” in the column Deliverables denotes that an update of the deliverable is required (preparing for the next phase).
	Phase
	Deliverables
	Not required for 2IM24/25

	User Requirements (UR)
	SPMP, SCMP, SQAP, URD, ATP
	

	Software Requirements (SR)
	SRD, STP, ATP*
SPMP*, SCMP*, SQAP*
	

	Architectural Design (AD)
	ADD, ITP,
SPMP*, SCMP*, SQAP*
	

	Detailed Design (DD)
	DDD, UTP,
SPMP*, SCMP*, SQAP*
	UTP,

SPMP*, SCMP*, SQAP*

	Implementation
	code, SUM, DDD,
SPMP*, SCMP*, SQAP*
	

	Unit Test (UT)
	UTR,
SPMP*, SCMP*, SQAP*
	UTR

	Integration Test (IT)
	ITR,
SPMP*, SCMP*, SQAP*
	ITR

	System Test (ST)
	STR,
SPMP*, SCMP*, SQAP*
	STR

	Acceptance Test (AT)
	presentation, ATR
	

Table 1: Overview of phases and deliverables.
Table 2 gives the scheduled activities and the deadlines for the project. Time during classes is spent on explanations about the process and the different phases, on answering any questions that may arise and on discussing deliverables with individual teams. The teams can request in class presentations of issues that need clarification.

When a hard deadline is indicated in the schedule, the final version of the deliverable must be handed over during class hours. This version will be used to grade the performance of the team. Obviously, if there are legitimate reasons for a delay, an extension of a hard deadline can be negotiated. Soft deadlines are not explicitly marked as such. They indicate the state in which particular documents should be at that point in time. If this is not the case, the team should put in extra hours to catch up. This is also the case when an extension of a hard deadline is granted.
The phase extensions of the management documents can be delivered at the end; of course the extensions can be discussed during class hours.
	week
	Class hours
	Activities non-class hours following week

	1

31/8
	First hour: First part Introduction Software Engineering Process

Second hour: presentations of the projects by the customers, sign up for projects
	During the entire project: research and prototyping activities.
Organize project

Management documents

Preparation interview customer

If time allows: 1st interview customer

	2

7/9
	 Second part Introduction Software Engineering Process
Opportunity to ask questions (applies to remainder of the course)
	If applicable: 1st interview customer
URD

Preparation 2nd interview customer

Management documents

	3

14/9
	First hour: SR phase and analysis models
First version URD (deliver also to customer)

Discuss URD and management documents per team
	Preparation 2nd interview customer
Analysis models
Second interview with customer, discuss URD with customer

	4

21/9
	Second (almost final) versions URD (also to customer) and management documents
Discuss documents and Analysis models per team
	Last changes URD, get approval from customer
First version SRD: analysis models and (informal) specification classes, methods and attributes from extended logical model, First version prototype (GUI, command-line mock-up, functional)

	5

28/9
	Hard deadline
- URD (approved by customer)
- management documents
Discuss SRD per team
	SRD

	6

12/10
	First hour: AD phase

Discuss SRD per team
	SRD

First version ADD

	7

19/10
	Second (almost final) version SRD (also to customer)

Bespreken ADD per groep
	Last changes SRD
ADD

Obtain approval customer for SRD

	8

26/10
	Hard deadline SRD (approved by customer)

Discuss ADD per team
	ADD

Coding (entire team during rest of project)

	9

2/11
	Second (almost final) version ADD

Discuss ADD per team
	Last changes ADD
Coding

	10

9/11
	Hard deadline ADD
	Coding

	11

23/11
	
	Coding

	12

30/11
	
	Coding/ Unit testing
Debugging

	13

7/12
	
	Integration & System Testing, Debugging
1st AT

	14

14/12
	Hard deadline 1st AT
	Testing, debugging, finish documentation
2nd AT

	15

21/12
	Hard deadline 2nd AT

Final presentation
Delivery project/product documentation
	Possibly: final presentations + delivery documentation at a later date, to be discussed

Table 2: Schedule and deadlines

� Notice that a high risk with a high impact needs to be addressed immediately!

� Notice that only part of the operations and attributes have been included in the figure. Setters and getters are never included. Attributes that are graphically represented are not shown in the boxes.

© 2007 TU/e, WIN

Version 1.1
PAGE
28

_1191933092.doc
[image: image1.png]dminisation

Coussndminisation

Couse

[—

(- .
R = ©7 Jname : sting
- JeectCounso : Coure —
sdiousetino1d: tingin o i) void voouses
¢ - & |change(in cld : String.in name : String) : void
FemoveCourzen 1 - voie - voia
ostCouratn o1 : stang: Couee
g S——
wsuten
Studentadminiiation >
paricipation] ParticipationAdministration
[listStudents) : Set +shdmin
sdStutenkin ¢St m - Skingin b - Daten - Sting - vt e atipationtn = Studantin o Coure) - voia
Femovestudantin 4 - Sting) - voia femove atoipsiongin = St ¢ - Couse) - vois
feectstutento: stugant
actsutentin s - sting): student
wstuten “pioipafons
o 0
Student Paricipaton
o

Frudenta - mt orate -t
name it wstutnt

JinnDate : Date
nitiae : ting

[changeqin 14 : Sting.in nm : String.in bd : Datein in: String): void

betoradetin arade

[Parcipationtin s - Studentin o - Course): void
in8):void
[deregistertn sa sting.n o1d : Sting): voig

_1191993871.doc
[image: image1.png]Mainframe

StudantTable

Studmods

[iutont - Jmutton
v xS
lt StudentTabie

[iutont - Jmutton
[iButonz : Jmutton
[iButons : Jmutton

[<<ereate>> Mainrameo
nitcomponentsn :void

lonClosein evt: Windawvent): void
Imaintin augs - Stina: vig

[actionpertormedtin o : ActionEvant : voia

fiLaber - staber
liPanei - spanet
liscroanet : scratipane
[iTable :aTabie

adste aTextrier

ld - aTextFierd
it JTeriata
leName - Textrieta
[oder : Stuamtoder
Jtudents : Student
a0 Dbxsos

[eotumntiames : tinal
J4sta - abjectyy

[<<oreates> Stuamodeio
Jaetvatueatgn tow ntin solumn nt): Object
JgetColumntiamein col - in): Sting

JgetColumnCount) : int

sCelE ditabietin o intin ool ind boolean
letvalusatin value : Gbjeotin fom intin ool in) :void
fretvatus(in vlue : Dbjectin aw intin ool - in): void
[aadrang - void

[deeteRanin rownum - 0t :void

[astRomcount) : int

[<<ereste>> StuentTabletn dbase : DbX5DS)
nitcomponentsn :void

[detteRanin evt: MouseEven) - void
JaadCickedin evt: MouseEvent) - void
JonCloseClickin evt: MouseEvent): void
fableChangedtin : TableModelEvent): void

Imaingin args - tina): vois

Student

Dbxss

[eontent - Objectnn
e Resutiset
ltudentia : Sting
lastname : Sting
nitiate : ting
lbinndste : Date

s Preparedstatement
v pbxsps

Jeon : Connaction

[aetconnectiono : Connection
letConnestionn GDBCSource : Sting): boolean
etose0 : void

lcommit :veia

[<<oreate>> Stuentin datat : Dbx5DS)
leopyContent :void
[getColumnCounty int

lastRomCount) : int
lgetTablecontentsn : Objectg
lavenoB0 : vois

Jgetcolumntiamesn : Stingl

ImodityResordtins1d - Sting.in am : Sing. in - Sting.in bd - Date. record : it void

[deeteResordtin record int - void

|addRecord(in studid : Sting,in shame : String,in sinit : String,in sBdate : Date) : void

_1192685580.doc
[image: image1.jpg]Product | Coffeattachine
[Fame sing
fFemaRe() ~products [rshowiienul)
fpour) [iserve()
hsolect |rssect)
lisshowmenuy 1
1
| s
Cup
|
Frmarey . o,
fsshowtdenu() LishowMenu() | L
Gofes() iTeal)
‘ e
1 ecofiea T ik | | e
GoffecBase T3 Sugar
g . T i
|iCofeasasa [iSugarg eatlase() |
oy | LMK e i | oo}

ngredients wil probably need

1o be singletons, but thats an

architecturalissue

Ingredient .

amount it

e g

Sadd)

“ngredints

_1192685652.doc
[image: image1.jpg]rowRsiremarts

[g aiom |4

L T

— —

Ik e
L I \ I I]
Reference
Recirements

St ateence. | =)

_1192685505.doc
[image: image1.jpg]coffeeBase

= g
HE i .
mm mm 58 M wm,m w °
1 i Pl L LI
i AN AN AN
] 2 T |z
T IANT

_1191993792.doc
[image: image1.png]GuiTast

otionLitener

e

TableModelLitensr

AbtactTsbleMods)

Mainframe

StudantTable

Studmods

[]

[]

oexsos

Dbxss

Student

_1191932556.doc
[image: image1.jpg]B -0l

open students| open participations
open courses

_1191932610.doc
[image: image1.jpg]table studer =]

studenia Testnarme inals it
500003 Koe H. 1998-08-09 |
00005 bos o 1990608
s00008 Setumater i 19780405
s00007 Draaisma BE 1953.0228
st Grifiosn K 1993.06:08
sa7aes Sehut L 1995.03:31
saas67 Stugent TENA 19950504
530085 wilerns W 1367-03:03 -
new student [studenta | [rame | nitets] intaete || adavow || detetorow || close |

_1191931872.doc
[image: image1.jpg]User Requirements f— — — — — — — — — — — — » Acceptance Test

Software
Requirements

_________ > System Test

Architectural | Integration Test
Design
Detailed Design |~ — —»| Unit Test

Implementation

